Bristol ISWMF Semi-Monthly Status Update (1/16/23 - 1/31/23)

Bernier, Quinn <QBernier@scsengineers.com>

Mon 3/6/2023 9:07 AM

To: Blalock, Susan (DEQ) <Susan.Blalock@deq.virginia.gov>;hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov <hall.kristen@epa.gov >;hall.kristen@epa.gov >;hurst, Jeffrey (DEQ) </hr>

Ms. Hall and Ms. Blalock,

In accordance with EPA's letter, "Approval of Higher Operating Temperature Values of Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Facility" from August 2021, please see the attached status report on existing wells, expansion of the gas collection system, and continuing operating and monitoring results, covering the period from January 16-31, 2023.

Quinn Bernier, PE*
SCS Engineers
15521 Midlothian Turnpike, Suite 305
Midlothian, Virginia 23113-7313
804-486-1908 (W)
570-441-9975 (C)
qbernier@scsengineers.com
*registered in VA and NC

Environmental Consulting & Contracting

SCS ENGINEERS

March 6, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III

Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers
Quinn Bernier, SCS Engineers

SUBJECT: Semi-Monthly Status Update – January 16th through January 31st , 2023

Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 1/16/23 through 1/31/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. Two wells (GW-51 and GW-68) are equipped with 2-inch automated temperature sensor tips and the remaining 23 wells have the shorter 1-inch tips. VDEQ and USEPA have receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.

SCS is verifying the validity and accuracy of the temperatures recorded by the automated sensors and making modifications to improve the precision of temperature measurements in the LFG wellheads. Because the 2-inch sensors have yielded temperatures that align more closely with manually collected temperature data than the 1-inch sensors, SCS is in the process of obtaining more 2-inch automated temperature sensors for the 23 remaining wells. Manual daily temperature measurements discussed in the following section, using a handheld digital thermometer inserted into the wellhead monitoring port, are considered the more accurate representation of LFG temperatures within the wellheads.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors. Some of the wells were not monitored on 1/17/23 and 1/24/23 due to high level alarms from a photoionization detector (PID) used by the City to monitor ambient air quality. Daily

temperature monitoring was not performed at any wellhead on 1/23/23 based on high level alarms from the PID throughout the site.

As shown in Table 1, temperatures measured manually during this monitoring period were greater than temperatures recorded by the automated temperature sensors in LFG wellheads, likely because the temperature probes on the GEM5000 extend further into the well than the automated sensors, and are less influenced by ambient temperatures. As mentioned, the wellheads with 1-inch automated temperature sensors are scheduled to be replaced with longer sensors by the end of February.

All manually recorded temperature measurements are provided in Attachment A.

Table 1. January 16th - 31st Temperature Exceedance Summary

\\/-!! ID	Average Automated	Average Manual	Manual Temperature minus
Well ID	Temperature	Temperature	Automated Temperature (°F)
32R	Measurements (°F) 110.99	Measurements (°F) 123.31	10.22
			12.32
35	40.54	48.77	8.23
39	39.48	46.69	7.21
40	93.61	115.23	21.62
46	115.11	143.00	27.89
47	61.97	93.54	31.56
49	119.53	133.69	14.16
50	101.77	125.31	23.54
51	80.94	91.31	10.37
52	100.57	132.00	31.43
53	118.95	143.62	24.66
54	98.88	133.00	34.12
55	49.64	59.86	10.22
56	98.34	126.92	28.58
57	129.70	162.33	32.64
58	96.54	105.75	9.21
59	93.79	123.67	29.88
60	85.93	112.62	26.69
62	39.89	50.31	10.42
63	104.91	123.54	18.63
64	107.00	138.62	31.62
65	80.66	132.85	52.18
66	67.06	107.75	40.69
67	83.96	127.92	43.96

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted on 1/5/23. During this monitoring period, wells that exhibited temperatures greater than 145° F on 1/5/23 were retested after corrective actions. Temperatures greater than 145° F continue to be recorded in GW-37 and GW-57. See Table 2 for a list of the status of all exceedances recorded in January 2023.

 Table 2.
 January Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Status as of 1/31/23
GW-37	4/6/22	HOV request submitted 3/8/22
GW-57	1/5/23	Ongoing, past 15-day timeline but less than 60 days
GW-64	1/5/23	Corrected 1/12/23

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells GW-37, GW-57, and GW-64 using 1.5-L Summa canisters on 1/6/23, 1/13/23, and 1/20/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Data from the lab as of 1/31/23 are listed in Table 3. The laboratory analytical data is included in **Attachment B** for further detail.

Table 3. LFG Wellhead Sampling Summary

Sample Date	GW-	37	GW-	57	GW-	-64
	CO (ppmv)	H2 (Vol. %)	CO (ppmv)	H2 (Vol. %)	CO (ppmv)	H2 (Vol. %)
1/6/23	151	2.22	259	3.84	ND	0.28
1/12/23	150	2.46	NM	NM		
1/18/23	144	2.50	NM	NM	Exceedance	e corrected
1/25/23	148	2.39	300	6.78		

Weekly required samples of CO were not collected for two weeks in January at GW-57 (noted as "NM" in Table 2) because a lack of LFG System vacuum caused condensate to infiltrate the sampling train during sampling activities. CO testing was conducted at GW-64 only on 1/6/23 because the temperature exceedance was corrected after this date.

The presence of hydrogen in samples from all three wells indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS Field Services (SCS-FS) continued construction of the Sidewall Odor Mitigation System (SOMS) in January. The initial phase of construction is a pilot-study on the western sidewall (referred to as Phase I). SCS-FS installed the upper and lower horizontal collector for Phase I and connected these collectors to a 2-HP Ametek Rotron regenerative blower and a CF-10 Solar Spark flare. The new blower/flare were operated starting on 1/31/23 to test LFG quality and quantity (see Figure 1).

Initial LFG monitoring data at the new blower inlet yielded methane concentrations between 36-40% and oxygen concentrations less than 3%, an acceptable quality for LFG. SCS and the City will continue to use the SOMS Phase I blower/flare system in early February to confirm that the LFG collected by the SOMS is of consistently acceptable quality, and if so, will connect the SOMS to the primary LFG Collection System.

Figure 1. Sidewall Odor Mitigation System Pilot-Study Phase I flare initial startup

The City has issued a notice of award to a Contractor for the current LFG System expansion project, which entails installation of additional vertical extraction

wells near the sidewall and deeper vertical extraction wells in the interior of the waste mass. All of the LFG vertical wells will be fitted with dedicated dewatering pumps and tied into the existing LFG System and dewatering system designed to increase the efficiency of LFG and landfill liquids extraction.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. No exceedances of the 500 ppmv threshold were recorded during the weekly SEM event held on 1/19/23. One exceedance was recorded during the 1/26/23 monitoring event at GW-53, This well was revisited for corrective action, and found not to be under vacuum at the time of monitoring. Vacuum was restored to well GW-53, and no SEM exceedances were recorded during a follow up SEM monitoring on 1/30/23.

The City has placed intermediate cover throughout the Permit No. 588 Landfill and installed well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during past weekly SEM events. The actions appear to be working based on the results of weekly SEM events during this monitoring period.

LFG System O&M

During this monitoring period, SCS investigated condensate sump CPS-2. Liquids were found to be moving through the check valve and into the discharge piping. Excess forcemain pressure was counteracting the sump pump through the discharge piping assembly. Similar issues were observed at LFG wells equipped with pumps in conjunction with CPS-2.

MEMORANDUM March 6, 2023 Page 5

SCS coordinated with the City's O&M contractor to replace the check valve at CPS-2 the week of 1/30/23. This resolved the matter of forcemain pressure counteracting the pump through the discharge hose, restoring proper operation of the pump in CPS-2 as well as approximately a dozen wellhead-dewatering pumps located in the south end of the Permit #588 Landfill.

Additionally, SCS continued to monitor, balance, and tune the leachate cleanouts on the southern border of the Permit #588 Landfill to increase LFG extraction. SCS believes that the ongoing maintenance of these leachate cleanouts is contributing to improvements in LFG quality observed by field staff at the main blower/flare station. Field staff will continue to balance and tune the LFG wellheads on the southern leachate cleanouts in February, as well as other LFG collection system wells.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol
Jon Hayes, City of Bristol
Jeff Hurst, VDEQ-SWRO
Tom Lock, SCS Field Services

David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A City of Bristol Daily LFG Well Temperature Readings

	_			Month	January	January	January	January	January	January	January	January	January	January	January	January	January	January	January	January
	ept	Drill		Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday
a)	Ŏ	O o	Se	Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Note	Well Depth	Date	Phase	Well Number																
1	102	10/16/2016	Old Well	35	58	NM	65	65	66	60	64		34	42	45	32	35	34	40	52
2	70	9/6/2017	Old Well	39	60	NM	58	54	52	50	57		28	59	58	30	40	38	39	44
3	100	9/7/2017	Old Well	40	123	NM	115	118	120	118	120		45	122	124	117	123	124	124	128
4	110	10/4/2016	Old Well	46	143	46	144	142	145	142	142		NM	144	140	143	144	145	144	141
5	120	10/4/2016	Old Well	47	95	NM	97	94	98	99	95	1	32	97	99	96	100	101	106	102
	•		•								•					•		•		
6	120	9/17/2013	Old Well	29	108	NM	98	96	98	95	100		75	103	106	71	30	32	38	44
7	100	8/23/2017	Old Well	30R	128	NM	128	130	128	126	128		122	130	128	126	84	81	86	92
8	120	8/30/2017	Old Well	31R	134	135	136	134	135	135	137	1	136	134	138	130	133	130	136	133
9	70	7/29/2016	Old Well	32	72	NM	70	82	80	76	88		75	80	80	68	63	60	65	66
10	100	7/28/2016	Old Well	33	126	NM	124	127	125	123	126		124	126	120	124	24	30	38	41
11	100	7/30/2016	Old Well	34	120	NM	134	130	130	128	126	1	114	112	118	124	129	130	133	128
12	100	8/1/2016	Old Well	36	59	NM	66	65	67	66	70	1	72	84	89	68	64	66	66	68
13	100	8/24/2017	Old Well	37	151	150	150	152	150	150	148		149	150	150	149	150	146	149	150
14	50	8/25/2017	Old Well	38	101	NM	100	100	98	99	96		83	100	98	98	100	99	101	103
15	75	9/8/2017	Old Well	41	102	NM	79	80	78	80	77		NM	93	101	84	88	84	91	98
16	57	9/8/2017	Old Well	42	114	NM	113	110	110	108	108	i	107	104	110	104	103	102	105	102
17	110	10/7/2016	Old Well	48	61	NM	65	62	66	65	70	ndf	23	57	54	26	30	31	34	37
17	110	10/1/2010	Old Well	1 40	01	INIVI	03	02	00	0.5	10	La	23] 31	J -1	20	30	71	34	31
1	120	10/1/2021	New Well	32R	127	NM	125	122	127	120	118	1 88	122	126	127	121	123	120	127	125
2	110	10/1/2021	New Well	49	135	135	136	138	132	130	128	ji.	136	135	132	134	136	135	134	132
3	96	10/1/2021	New Well	50	119	NM	127	125	127	126	132	err	125	125	126	123	124	125	122	122
	50	10/1/2021	IVEW WEI	30	113	I VIVI	127	123	127	120	132	e P	123	123	120	123	12-7	123	122	122
												n t								
4	114	10/1/2021	New Well	51	114	NM	108	110	111	112	114	≣S i	78	88	83	73	77	74	79	80
5	109	10/1/2021	New Well	52	129	NM	130	130	132	130	128	- We	132	136	138	114	135	135	137	139
6	91	10/1/2021	New Well	53	149	NM	152	150	150	149	150	cal	135	143	140	135	142	141	140	140
7	91	10/1/2021	New Well	54	125	NM	135	132	133	132	130	erti	135	135	132	128	135	132	134	136
8	104	10/1/2021	New Well	55	96	NM	61	66	64	62	60	9	NM	NM	NM	NM	55	51	Too Tall	Too Tall
	† - ·	-, ,===:					1					*Unable to record temperature readings at LFG vertical wells in the Permit 588 Landfill.								
9	109	10/1/2021	New Well	56	135	75	124	120	121	120	118	ıs aı	NM	133	136	130	131	131	130	129
10	103	10/1/2021	New Well	57	177	NM	175	172	170	165	168	Jing	NM	162	160	156	159	157	155	149
11	92	10/1/2021	New Well	58	122	NM	80	86	81	80	74	eac	NM	127	129	126	123	120	122	121
12	72	10/1/2021	New Well	59	120	NM	138	135	135	132	130	l e	NM	118	114	113	116	116	118	119
13	120	10/1/2021	New Well	60	108	NM	115	112	110	109	114	atu	110	116	113	105	114	112	116	118
14	105	10/1/2021	New Well	61	119	NM	130	132	129	127	129	per	133	136	138	122	122	123	121	120
15	120	10/1/2021	New Well	62	60	NM	61	66	68	66	69	eml	27	62	60	29	27	35	42	42
16	117	10/1/2021	New Well	63	124	NM	126	128	125	127	130	g t	118	120	121	114	124	120	125	128
17	120	10/1/2021	New Well	64	145	NM	143	140	140	138	134	jo j	133	136	136	132	141	145	144	140
18	100	10/1/2021	New Well	65	134	134	134	137	135	132	130	0 16	133	134	135	133	134	130	132	128
19	102	10/1/2021	New Well	66	130	NM	126	127	125	127	124	le tr	NM	49	54	93	116	115	117	120
20	100	10/1/2021	New Well	67	120	125	127	125	125	125	128	Jab	124	131	128	120	130	132	132	136
21	75	10/1/2021	New Well	68	127	NM	126	125	122	126	122] [*]	125	125	127	124	125	127	126	125
	1 -	-, ,		1	<u> </u>							*			I					

^{*}Note: there was a low level isolated area in the Permit #588 Landfill where emissions hovered over the landfill surface on 1/17/23, 1/23/23, and 1/24/23. Therefore daily temperatures were not recorded on those days or only partial monitoring could be performed by City of Bristol personnel for health and safety reasons.

Attachment B Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received: January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued: January 16, 2023 16:12

Harrisburg, PA 17111

Project Number: 07220028.00

Submitted To: Tom Lock

100001415

Purchase Order: 0

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 01/09/2023 10:30. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received: January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued: January 16, 2023 16:12

Harrisburg, PA 17111

Project Number: 07220028.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23A0324-01	Air	01/06/2023 08:59	01/09/2023 10:30
57	23A0324-02	Air	01/06/2023 09:05	01/09/2023 10:30
64	23A0324-03	Air	01/06/2023 09:15	01/09/2023 10:30

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 9, 2023 10:30

January 16, 2023 16:12

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock Project Number:

07220028.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23A0324-01 Sample Matrix: Air

Sample Type: LV

Sampled: 1/6/2023 08:59

Client Site I.D.:

Sub Description/Location: Canister ID: 063-00245::12848

Sample Description/Location:

Canister Size: 1.4L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3

Receipt Vacuum(in Hg): 3 Flow Controller Type: PASSIVE

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 151 Carbon Monoxide, as received 90.0 90.0 9 1 1/11/23 11:02 MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

EPA 3C Vol%

Date/Time Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst Analyte Hydrogen (H2), as received 2.22 0.18 0.18 9 1 1/11/23 11:02 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 9, 2023 10:30

January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Type: LV

Field Sample #: 57

Sample ID: 23A0324-02 Sample Matrix: Air

Sampled: 1/6/2023 09:05

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00281::13372

Canister Size: 1.4L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3.4

Receipt Vacuum(in Hg): 3.4

Flow Controller Type: PASSIVE

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution Analyzed Analyst 259 Carbon Monoxide, as received 90.0 90.0 9 1 1/11/23 12:38 MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

EPA 3C Vol% Date/Time Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst Analyte Hydrogen (H2), as received 3.84 0.18 0.18 9 1 1/11/23 12:38 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 9, 2023 10:30

January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Project Number:

07220028.00

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 64

Client Site I.D.:

Sample ID: 23A0324-03

Sample Matrix: Air

Sampled: 1/6/2023 09:15

Analyte

Carbon Monoxide, as received

Sample Type: LV

Sample Description/Location:

Sub Description/Location:
Canister ID: 063-00284::13382

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 3.8

Receipt Vacuum(in Hg): 3.8

Flow Controller Type: PASSIVE

Flow Controller ID:

Vola	itile Organi	c Compoun	ds by GC/TCD - Unadjusted, as received basis	S			
	ppmv		ALT-145			Date/Time	
Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
ND	90.0	90.0		9	1	1/11/23 13:33	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as receiv	ved basis			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Hydrogen (H2), as received	0.28	0.18	0.18		9	1	1/11/23 13:33	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

January 9, 2023 10:30

4330 Lewis Road, Suite 1

January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Purchase Order:

07-SO04485

Analytical Summary

Bristol

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GC/TCD - Unadjusted, as re	ceived basis	Preparation Method:	No Prep VOC GC Air	
23A0324-01	1.00 mL / 1.00 mL	ALT-145	BGA0282	SGA0269	AG00026
23A0324-02	1.00 mL / 1.00 mL	ALT-145	BGA0282	SGA0269	AG00026
23A0324-03	1.00 mL / 1.00 mL	ALT-145	BGA0282	SGA0269	AG00026
23A0324-01	1.00 mL / 1.00 mL	EPA 3C	BGA0282	SGA0269	AG00026
23A0324-02	1.00 mL / 1.00 mL	EPA 3C	BGA0282	SGA0269	AG00026
23A0324-03	1.00 mL / 1.00 mL	EPA 3C	BGA0282	SGA0269	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA Date Received:

January 9, 2023 10:30

4330 Lewis Road, Suite 1

0.03

0.009

Vol%

Date Issued: January 16, 2023 16:12

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Carbon Monoxide

Project Number:

07220028.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control **Enthalpy Analytical**

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0282 - No Prep VOC	GC Air									
Blank (BGA0282-BLK1)					Prep	ared &	Analyzed	: 01/11/20)23	
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGA0282-BS1)					Prep	ared &	Analyzed	: 01/11/20)23	
Methane	4170	500	ppmv	5000		83.3	0-200			
Methane	4170	0.05	ppmv	5000		83.3	70-130			
Carbon dioxide	4320	500	ppmv	5000		86.5	0-200			
Carbon dioxide	4320	0.05	ppmv	5000		86.5	70-130			
Oxygen (O2)	5550	0.05	ppmv	5000		111	70-130			
Oxygen (O2)	5550	500	ppmv	5000		111	0-200			
Hydrogen (H2)	5990	200	ppmv	5100		118	0-200			
Hydrogen (H2)	5990	0.02	ppmv	5100		118	70-130			
Nitrogen (N2)	5880	1	ppmv	5000		118	70-130			
Nitrogen (N2)	5880	2000	ppmv	5000		118	0-200			
Carbon Monoxide	5020	10	ppmv	5000		100	0-200			
Carbon Monoxide	5020	0.001	ppmv	5000		100	70-130			
Duplicate (BGA0282-DUP1)		Sou	urce: 23A	0324-01	Prep	ared &	Analyzed	: 01/11/20)23	
Methane	11.4	0.45	Vol%		11.6			1.61	5	
Carbon dioxide	24.8	0.45	Vol%		25.0			0.855	5	
Oxygen (O2)	7.19	0.45	Vol%		7.31			1.67	5	
Nitrogen (N2)	50.9	9.00	Vol%		51.7			1.51	5	
Hydrogen (H2)	2.21	0.18	Vol%		2.22			0.412	5	
Hydrogen (H2)	21700	1800	ppmv		22200)		2.45	25	
Carbon Monoxide	150	90.0	ppmv		151			0.538	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02			0.538	5	
Duplicate (BGA0282-DUP2)		Sou	urce: 23A	0324-02	Prep	ared &	Analyzed	: 01/11/20)23	
Hydrogen (H2)	3.95	0.18	Vol%		3.84			2.83	5	<u> </u>
Hydrogen (H2)	39500	1800	ppmv		38400)		2.83	25	
Carbon Monoxide	260	90.0	ppmv		259			0.104	25	

0.03

0.104

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued: Jan

January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGA0282 - No Prep VC	OC GC Air										
Duplicate (BGA0282-DUP3)		Soi	urce: 23A	0324-03	Prep	pared & /	Analyzed	: 01/11/20)23		
Hydrogen (H2)	0.29	0.18	Vol%		0.28	3		4.51	5		
Hydrogen (H2)	2920	1800	ppmv		279)		4.51	25		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		
Duplicate (BGA0282-DUP4)		Soi	urce: 23A	0579-03	Prep	pared & /	Analyzed	: 01/13/20	023		
Methane	46.6	0.45	Vol%		47.0)		0.829	5		
Carbon dioxide	45.3	0.45	Vol%		45.3	3		0.0420	5		
Oxygen (O2)	0.52	0.45	Vol%		0.53	3		1.72	5		
Hydrogen (H2)	<	0.18	Vol%		<0.1	8		NA	5		
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		
Duplicate (BGA0282-DUP5)		Soi	urce: 23A	0579-04	Prep	pared & /	Analyzed	: 01/13/20	023		
Methane	20.7	0.45	Vol%		20.8	3		0.484	5		
Carbon dioxide	28.6	0.45	Vol%		28.8	3		0.922	5		
Oxygen (O2)	1.00	0.45	Vol%		1.00)		0.0198	5		
Hydrogen (H2)	5.96	0.18	Vol%		5.96	6		0.0821	5		
Nitrogen (N2)	33.8	9.00	Vol%		34.1			0.690	5		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		
Duplicate (BGA0282-DUP6)		Soi	urce: 23A	0579-05	Prep	pared & /	Analyzed	: 01/13/20	023		
Methane	22.0	0.45	Vol%		21.9)		0.161	5		
Carbon dioxide	24.8	0.45	Vol%		24.7	,		0.375	5		
Oxygen (O2)	4.89	0.45	Vol%		4.89)		0.166	5		
Nitrogen (N2)	34.1	9.00	Vol%		34.0)		0.241	5		
Hydrogen (H2)	3.57	0.18	Vol%		3.58	3		0.308	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued: January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGA0282 - No Prep VOC GC Air

Duplicate (BGA0282-DUP7)		Sou	urce: 23A0579-06	Prepared & Analyzed: 01/13/2023			
Methane	38.6	0.45	Vol%	38.4	0.543	5	
Carbon dioxide	39.3	0.45	Vol%	39.3	0.117	5	
Oxygen (O2)	3.02	0.45	Vol%	3.02	0.117	5	
Hydrogen (H2)	<	0.18	Vol%	<0.18	NA	5	
Nitrogen (N2)	10.7	9.00	Vol%	10.7	0.198	5	
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5	

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ja

January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued: January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 01/27/23

COMPANY NAME: SCS Field Services - Harri	sburg IN	VOICE TO:	Same				PROJ	ECT NAM	E/Quote #	: Bristo	l			
CONTACT:	IN	VOICE CON	TACT:				SITE I	NAME: B	7541					
ADDRESS:	ואו	VOICE ADDI	RESS:				PROJ	ECT NUM	IBER: り	72200	28.0	Ø		
PHONE #:	יאו	VOICE PHO	NE #:				P.O. #	:						
FAX #: EN	IAIL:	·					Pretre	atment Pr	ogram:					
Is sample for compliance reporting? (YES) NO	Regulate	ory State: ∤	A Iss	ample froi	m a chlorir	nated sup	ply? (YES N	IO PV	VS I.D. #:				
SAMPLER NAME (PRINT): Ryan Sey	neur SA	MPLER SIG	SNATURE	: Ryan	سر سیکی	yma-	Turn /	Around Ti	ime: Circ	de: 10 🤇	5 Days)	or .	Day
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Land	IfilI/Vent Gas OT	=OtherV_		<u> </u>		<u> </u>		063	-22K-004	0				
Regulator Info Canister In	formation			Sampling S	Start Informa	ation		Sampling	Stop Inforn	nation			AN/	ALYSI
CLIENT		LAB	LVD -	Barometric	Pres. (in Hg		1	Barometric	Pres. (in H			၂ ပို	္ဂါ	5
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID	(T) OZIS Cleaning Batch ID		Receiving Canister acuum (in Hg)	Start Date	Start Time	Initial Canister Vacuum (ir Hg)	Starting Sample Temp *F	Stop Date	Stop Time	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See Codes)	Alt 145 C	4)19/2
1) 37 (083-044) 5400 12848	1.4 221129-02	30 -		1/6/23		40	199.2	16/15	8:99	9		LG	ı	K
2) 57 13372	1.4 221129-02	30		1/6/23	9:06	40	148.1	1/1/23	9:05	10	148.4	LG	x	K
3) 64 13382	1.4 221129-02		1€ 3.0″	16/23	9:10	40	145	1/6/23	9:15	10	145.2	LG	x	¥
4) 13384	1.4 221129-02	30										LG	x	
RELINQUISHED:	RECEIVED:		DATE	E / TIME	OC Data B	ackago II. 4	ND LICE	ONLY	21.5		10.04	(1)	-1	
TELINGOIOTED.	FPARX	e	DAIL		Level I		4D U3E	UNLT	31U 20).4°C 1	71 H	W	N	UICL
RELINQUISHED: DATE / TIME FLACK C	RECEIVED:	-		.030	Level II		SCS F	ield Se	rvices	23A032	24			
RELINQUISHED: DATE / TIME	RECEIVED:			E / TIME	Level III	_ I	Bristol				-			
	l				Level IV]	Recd: (01/09/202	23 Due:	01/16/20	23 -			

Certificate of Analysis

Final Report

Laboratory Order ID 23A0324

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 9, 2023 10:30

4330 Lewis Road, Suite 1

Date Issued:

January 16, 2023 16:12

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number:

07220028.00

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.40°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA Date Received: January 13, 2023 10:15

4330 Lewis Road, Suite 1 Date Issued: January 20, 2023 16:19

Harrisburg, PA 17111 Project Number: 07220028.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 01/13/2023 10:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received: January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued: January 20, 2023 16:19

Harrisburg, PA 17111

Tom Lock

Project Number: 07220028.00

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23A0671-02	Air	01/12/2023 13:15	01/13/2023 10:15

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued:

January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To:

Tom Lock

Project Number:

07220028.00

Client Site I.D.:

Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23A0671-02 Sample Matrix: Air

Sampled: 1/12/2023 13:15

Canister Size: 1.4L

Sample Description/Location:

Canister ID: 063-00366::13971

Sub Description/Location:

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg):

Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Sample Type: LV

Carbon

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis
ALT 44E

	ALT-145
ppmv	

		ppiliv					Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		Analyst		
n Monoxide, as received	150	90.0	90.0		9	1	1/17/23 11:47 N	/IER		

Volatile Organic	Compounds	hy GC/TCD -	Unadjusted	as received basis
voianie Organic	Compounds	Dy GO/10D -	Ullaujusteu,	as received basis

		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Hydrogen (H2), as received	2.46	0.18	0.18		9	1	1/17/23 11:47	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued:

January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted, as r	eceived basis	Preparation Method:	No Prep VOC GC Air	
23A0671-02	1.00 mL / 1.00 mL	ALT-145	BGA0503	SGA0475	AG00026
23A0671-02	1.00 mL / 1.00 mL	EPA 3C	BGA0503	SGA0475	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued: January 20, 2023 16:19

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD	
te	Result	Limit	Units	l evel	Result	%RFC	Limits	RPD	I imit	Qual

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGA0503 - No Prep VC	OC GC Air										
Blank (BGA0503-BLK1)					Prep	pared & A	Analyzed	: 01/17/20	023		
Methane	<	500	ppmv								
Carbon dioxide	<	500	ppmv								
Oxygen (O2)	<	500	ppmv								
Hydrogen (H2)	<	200	ppmv								
Nitrogen (N2)	<	2000	ppmv								
Hydrogen (H2)	<	0.02	Vol%								
Carbon Monoxide	<	10.0	ppmv								
LCS (BGA0503-BS1)					Prep	pared & A	Analyzed	: 01/17/20	023		
Methane	4040	500	ppmv	5000		80.8	0-200				
Methane	4040	0.05	ppmv	5000		80.8	70-130				
Carbon dioxide	4360	500	ppmv	5000		87.1	0-200				
Carbon dioxide	4360	0.05	ppmv	5000		87.1	70-130				
Oxygen (O2)	5380	0.05	ppmv	5000		108	70-130				
Oxygen (O2)	5380	500	ppmv	5000		108	0-200				
Hydrogen (H2)	5900	200	ppmv	5100		116	0-200				
Nitrogen (N2)	5690	2000	ppmv	5000		114	0-200				
Hydrogen (H2)	5900	0.02	ppmv	5100		116	70-130				
Nitrogen (N2)	5690	1	ppmv	5000		114	70-130				
Carbon Monoxide	4880	0.001	ppmv	5000		97.6	70-130				
Carbon Monoxide	4880	10	ppmv	5000		97.6	0-200				
Duplicate (BGA0503-DUP1)		Soi	urce: 23A	.0671-02	Prep	pared & A	Analyzed	: 01/17/20	023		
Methane	114000	4500	ppmv		11400	00		0.623	25		
Methane	11.4	0.45	Vol%		11.4	1		0.623	5		
Carbon dioxide	251000	4500	ppmv		24700	00		1.28	25		
Carbon dioxide	25.1	0.45	Vol%		24.7	7		1.28	5		
Oxygen (O2)	62700	4500	ppmv		6330	00		1.07	25		
Oxygen (O2)	6.27	0.45	Vol%		6.33	3		1.07	5		
Nitrogen (N2)	478000	18000	ppmv		47500	00		0.487	25		
Hydrogen (H2)	25200	1800	ppmv		2460	00		2.30	25		
Nitrogen (N2)	47.8	9.00	Vol%		47.5	5		0.487	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued: January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source: 23A0671-02 Prepared & Analyzed: 01/17/2023 Prepared & Analyzed: 01/20/2023 Prepared & Analyz		R	eporting		Spike	Source		%REC		RPD	
uplicate (BGA0503-DUP1) ydrogen (H2) 2.52 0.18 Vol% 2.46 2.30 5 arbon Monoxide 149 90.0 ppmv 150 0.02 1.20 5 uplicate (BGA0503-DUP2) Source: 23A0754-01 Prepared & Analyzed: 01/20/2023 uplicate (BGA0503-DUP3) Source: 23A0754-01 Prepared & Analyzed: 01/20/2023 uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/20/2023 Uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/20/2023 Uplicate (BGA0503-DUP3) Uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared &	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
driogen (H2) 2.52 0.18 Vol% 2.46 2.30 5 arbon Monoxide 149 90.0 ppmv 150 1.20 25 arbon Monoxide 0.01 0.099 vol% 0.02 1.20 5 suplicate (BGA0503-DUP2) Source: 23A0754-01 Prepared & Analyzed: 01/20/2023 ethane 29200 4500 ppmv 289000 1.05 25 ethane 292.0 0.45 Vol% 28.9 1.05 5 arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 arbon dioxide 314000 4500 ppmv 311000 0.925 25 vygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 vygen (O2) 1790 4500 ppmv 46900 0.333 25 drogen (N2) 25900 18000 ppmv 257000 0.763 5 trogen (N2) 25900 18000 <th< th=""><th>Batch BGA0503 - No Prep VC</th><th>OC GC Air</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Batch BGA0503 - No Prep VC	OC GC Air									
Farbon Monoxide 149 90.0 ppmv 150 1.20 25 arbon Monoxide 0.01 0.099 Vol% 0.02 1.20 5 uplicate (BGA0503-DUP2) Source: 23A0754-01 Prepared & Analyzed: 01/20/2023 ethane 29200 4500 ppmV 289000 1.05 25 ethane 29.2 0.45 Vol% 28.9 1.05 5 arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 arbon dioxide 314000 4500 ppmV 311000 0.925 25 kygen (O2) 1.79 0.45 Vol% 1.80 0.333 25 kygen (O2) 1.790 4500 ppmV 4800 0.333 25 kygen (O2) 1.790 4500 ppmV 48900 0.333 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 trogen (N2) 25900 18000	Duplicate (BGA0503-DUP1)		Soi	urce: 23A	0671-02	Prep	ared & /	Analyzed	: 01/17/2	023	
arbon Monoxide 0.01 0.09 Vol% 0.02 1.20 5 uplicate (BGA0503-DUP2) Source: 23A0754-01 Prepared & Analyzed: 01/20/2023 ethane 29200 4500 ppmv 289000 1.05 25 arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 arbon dioxide 31400 4500 ppmv 311000 0.925 25 xygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 xygen (O2) 1790 4500 ppmv 48900 0.333 25 xygen (O2) 1790 4500 ppmv 48900 0.333 25 xygen (O2) 1790 1800 ppmv 48900 0.333 25 xygen (O2) 1790 1800 ppmv 48900 0.363 25 trogen (N2) 25.9 9.0 Vol% 25.7 0.763 5 arbon Monoxide < 90.0 ppmv 490.0 NA 25 arbon Monoxide < 90.0 ppmv 490.0 NA 5 uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 20800 4500 ppmv 207000 0.651 25 arbon dioxide 28400 4500 ppmv 207000 0.651 25 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 1900 0.427 25 xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 1200 4500 ppmv 374000 0.283 25 trogen (N2) 57400 1800 ppmv 38000 1.04 25 xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 1.20 0.45 Vol% 1.20 0.428 25	Hydrogen (H2)	2.52	0.18	Vol%		2.46	6		2.30	5	
Prepared & Analyzed: 01/20/2023 Prep	Carbon Monoxide	149	90.0	ppmv		150			1.20	25	
tethane 29200 4500 ppmv 289000 1.05 25 ethane 29.2 0.45 Vol% 28.9 1.05 5 arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 arbon dioxide 31400 4500 ppmv 311000 0.925 25 kygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 kygen (O2) 17900 4500 ppmv 18000 0.333 25 krogen (H2) 47000 1800 ppmv 46900 0.363 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 arbon Monoxide < 90.0 ppmv 257000 0.763 25 arbon Monoxide < 90.0 ppmv 490.0 NA 25 arbon Monoxide < 0.009 Vol% < 0.009 NA 5 suplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 20800 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 1900 0.427 5 arbon dioxide 28400 4500 ppmv 1900 0.427 5 kygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1200 4500 ppmv 58000 1.04 25 kygen (O2) 1200 4500 ppmv 58000 1.04 25 kygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 1.20 0.45 Vol% 1.19 0.427 5 kygen (O2) 1.20 0.45 Vol% 1.20 0.283 5 kygen (O2) 1.20 0.20 0.20 0.283 5 kygen (O2) 1.20 0.20 0.2	Carbon Monoxide	0.01	0.009	Vol%		0.02	2		1.20	5	
ethane 29.2 0.45 Vol% 28.9 1.05 5 arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 arbon dioxide 314000 4500 ppmv 311000 0.925 25 kygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 kygen (O2) 1790 4500 ppmv 1800 0.3333 25 kydegen (H2) 47000 1800 ppmv 46900 0.363 25 ktrogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 ktrogen (N2) 259000 1800 ppmv 490.0 0.763 25 arbon Monoxide < 90.0	Duplicate (BGA0503-DUP2)		Soi	urce: 23A	0754-01	Prep	ared & /	Analyzed	: 01/20/2	023	
arbon dioxide 31.4 0.45 Vol% 31.1 0.925 5 sarbon dioxide 314000 4500 ppmv 311000 0.925 25 arbon dioxide 314000 4500 ppmv 311000 0.925 25 arbon dioxide 314000 4500 ppmv 18000 0.333 5 saygen (O2) 17900 4500 ppmv 18000 0.333 25 volvegen (H2) 47000 1800 ppmv 46900 0.363 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 trogen (N2) 25900 18000 ppmv 257000 0.763 25 arbon Monoxide < 90.0 ppmv 490.0 NA 25 arbon Monoxide < 90.0 ppmv 490.0 NA 5 arbon Monoxide < 0.009 Vol% 40.009 NA 5 arbon Monoxide < 0.009 Vol% 40.009 NA 5 arbon Monoxide 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 1900 0.427 25 arbon dioxide 28400 4500 ppmv 1900 0.427 25 arbon dioxide 28400 4500 ppmv 1900 0.427 25 arbon dioxide 28400 4500 ppmv 374000 0.283 25 arbon dioxide 4 8 90.0 ppmv 374000 0.283 25 arbon dioxide 4 90.0 ppmv 374000 0.283 25 arbon dioxide 4 90.0 ppmv 374000 0.283 5 arbon Monoxide 4 90.0 ppmv 374000 0.283 5 arbon Monoxide 4 90.0 ppmv 4 90.0 ppmv 374000 0.283 5 arbon Monoxide 4 90.0 ppmv 4 90.0 ppmv 4 90.0 ppm	Methane	292000	4500	ppmv		28900	00		1.05	25	
arbon dioxide 314000 4500 ppmv 311000 0.925 25 25 kygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 5 kygen (O2) 1790 4500 ppmv 18000 ppmv 0.333 25 kygen (O2) 17900 4500 ppmv 46900 0.333 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 5 trogen (N2) 259000 18000 ppmv 257000 0.763 25 25 arbon Monoxide < 90.0 ppmv 90.0 NA 25 arbon Monoxide < 90.0 ppmv 40.009 NA 5 NA 5 suplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 208000 4500 ppmv 207000 0.651 25 ethane 20.8 0.45 Vol% 20.7 0.661 5 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 5 kygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 5 kygen (O2) 120 0.45 Vol% 1.19 0.427 5 5 kygen (O2) 120 0.45 Vol% 1.19 0.427 5	Methane	29.2	0.45	Vol%		28.9)		1.05	5	
xygen (O2) 1.79 0.45 Vol% 1.80 0.333 5 xygen (O2) 17900 4500 ppmv 18000 0.333 25 ydrogen (H2) 47000 1800 ppmv 46900 0.363 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 trogen (N2) 259000 18000 ppmv 257000 0.763 25 arbon Monoxide < 90.0 ppmv < 90.0 NA 25 arbon Monoxide < 90.09 Vol% <0.009 NA 5 uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 208000 4500 ppmv 207000 0.651 25 ethane 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 25 xygen (O2) 1.20 0.45 Vol% 1.19	Carbon dioxide	31.4	0.45	Vol%		31.1			0.925	5	
xygen (O2) 17900 4500 ppmv 18000 0.333 25 ydrogen (H2) 47000 1800 ppmv 46900 0.363 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 trogen (N2) 259000 18000 ppmv 257000 0.763 25 arbon Monoxide < 90.0 ppmv <90.0 NA 25 arbon Monoxide < 0.009 Vol% <0.009 NA 5 uplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 208000 4500 ppmv 207000 0.651 25 ethane 20800 4500 ppmv 207000 0.651 25 ethane 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 25 xygen (O2) 1.20 0.45 Vol% 1.19	Carbon dioxide	314000	4500	ppmv		31100	00		0.925	25	
ydrogen (H2) 47000 1800 ppmv 46900 0.363 25 trogen (N2) 25.9 9.00 Vol% 25.7 0.763 5 trogen (N2) 259000 18000 ppmv 257000 0.763 25 arbon Monoxide < 90.0 ppmv 490.0 NA 25 arbon Monoxide < 0.009 Vol% <0.009 NA 5 supplicate (BGA0503-DUP3) ethane 208000 4500 ppmv 207000 0.651 25 arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 283000 0.451 25 arbon dioxide 28400 4500 ppmv 11900 0.451 5 arbon dioxide 28400 4500 ppmv 11900 0.427 25 arbon dioxide 28400 4500 ppmv 11900 0.283 25 arbon dioxide 28400 4500 ppmv 374000 0.283 25 arbon dioxide 28400 4500 ppmv 374000 0.283 5 arbon dioxide 28400 4500 ppmv 290.0 NA 25	Oxygen (O2)	1.79	0.45	Vol%		1.80)		0.333	5	
trogen (N2)	Oxygen (O2)	17900	4500	ppmv		1800	0		0.333	25	
trogen (N2) 259000 18000 ppmv 257000 0.763 25 arbon Monoxide	Hydrogen (H2)	47000	1800	ppmv		4690	0		0.363	25	
Arbon Monoxide	Nitrogen (N2)	25.9	9.00	Vol%		25.7	•		0.763	5	
Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 Prepared & Analyzed: 01/20/2023	Nitrogen (N2)	259000	18000	ppmv		25700	00		0.763	25	
Auplicate (BGA0503-DUP3) Source: 23A0754-02 Prepared & Analyzed: 01/20/2023 ethane 208000 4500 ppmv 207000 0.651 25 ethane 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 12000 4500 ppmv 11900 0.427 25 ydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide 90.0 ppmv <90.0	Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
tethane 208000 4500 ppmv 207000 0.651 25 ethane 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 exygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 exygen (O2) 12000 4500 ppmv 11900 0.427 25 eydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 etrogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 erbon Monoxide < 90.0 ppmv < 90.0 NA 25	Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
ethane 20.8 0.45 Vol% 20.7 0.651 5 arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 axygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 axygen (O2) 12000 4500 ppmv 11900 0.427 25 axygen (H2) 57400 1800 ppmv 58000 1.04 25 atrogen (N2) 375000 18000 ppmv 374000 0.283 25 arbon Monoxide < 90.0 ppmv <90.0 NA 25	Duplicate (BGA0503-DUP3)		Soi	urce: 23A	0754-02	Prep	ared & /	Analyzed	: 01/20/2	023	
arbon dioxide 284000 4500 ppmv 283000 0.451 25 arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 12000 4500 ppmv 11900 0.427 25 ydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv <90.0 NA 25	Methane	208000	4500	ppmv		20700	00		0.651	25	
arbon dioxide 28.4 0.45 Vol% 28.3 0.451 5 xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 12000 4500 ppmv 11900 0.427 25 ydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv <90.0 NA 25	Methane	20.8	0.45	Vol%		20.7	•		0.651	5	
xygen (O2) 1.20 0.45 Vol% 1.19 0.427 5 xygen (O2) 12000 4500 ppmv 11900 0.427 25 ydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 37500 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv < 90.0 NA 25	Carbon dioxide	284000	4500	ppmv		28300	00		0.451	25	
xygen (O2) 12000 4500 ppmv 11900 0.427 25 ydrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv < 90.0 NA 25	Carbon dioxide	28.4	0.45	Vol%		28.3	3		0.451	5	
vdrogen (H2) 57400 1800 ppmv 58000 1.04 25 trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv < 90.0 NA 25	Oxygen (O2)	1.20	0.45	Vol%		1.19)		0.427	5	
trogen (N2) 375000 18000 ppmv 374000 0.283 25 trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv <90.0 NA 25	Oxygen (O2)	12000	4500	ppmv		1190	0		0.427	25	
trogen (N2) 37.5 9.00 Vol% 37.4 0.283 5 arbon Monoxide < 90.0 ppmv <90.0 NA 25	Hydrogen (H2)	57400	1800	ppmv		5800	0		1.04	25	
arbon Monoxide < 90.0 ppmv <90.0 NA 25	Nitrogen (N2)	375000	18000	ppmv		37400	00		0.283	25	
••	Nitrogen (N2)	37.5	9.00	Vol%		37.4	ļ		0.283	5	
arbon Monoxide < 0.009 Vol% <0.009 NA 5	Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
	Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued:

January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Batch BGA0503 - No Prep VOC GC Air

Duplicate (BGA0503-DUP4)		Sou	urce: 23A0954-01	Prenared & Ar	nalyzed: 01/20/202	23
			uice. 23A0334-01	•		
Methane	<	500	ppmv	108000	NA	25
Methane	<	0.05	Vol%	10.8	NA	5
Carbon dioxide	<	0.05	Vol%	23.9	NA	5
Carbon dioxide	<	500	ppmv	239000	NA	25
Oxygen (O2)	563	500	ppmv	68900	197	25
Oxygen (O2)	0.06	0.05	Vol%	6.89	197	5
Hydrogen (H2)	<	200	ppmv	25000	NA	25
Nitrogen (N2)	<	2000	ppmv	492000	NA	25
Nitrogen (N2)	<	1.00	Vol%	49.2	NA	5
Hydrogen (H2)	<	0.02	Vol%	2.50	NA	5
Carbon Monoxide	<	10.0	ppmv	144	NA	25
Carbon Monoxide	<	0.001	Vol%	0.01	NA	5

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued:

January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 01/27/23

	CHAIR OF COSTODY	Equipment due on En E
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same	PROJECT NAME/Quote #: Bristol
CONTACT:	INVOICE CONTACT:	SITE NAME:
ADDRESS:	INVOICE ADDRESS:	PROJECT NUMBER: 07220628.06
PHONE #:	INVOICE PHONE #:	P.O. #:
FAX #: EMAIL:	I	Pretreatment Program:
Is sample for compliance reporting? YES NO Regu	ulatory State:√⋈ Is sample from a chlorinated suppl	y? YES (NO PWS I.D. #:
SAMPLER NAME (PRINT): Ryan Seynour	SAMPLER SIGNATURE: Ryan Suyman	Turn Around Time: Circle: 10 5 Days or _ Day
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Ga	as OT=Other	063-22K-0040
Regulator Info Canister Information	n Sampling Start Information	Sampling Stop Information Barometric Pres. (in Hg):
CLIENT	LAB LAB Barometric Pres. (in Hg):	Barometric Pres. (in Hg):
SAMPLE I.D. Flow Cal Controller Flow (mUmin) Canister ID Clear Batch		Starting Sample Temp °F Stop Date Stop Time (24hr clock) Stop Time (
1) 57 13960 1.4 22112	$\frac{30}{2811}$ $\frac{30}{23}$ $\frac{12.55}{23}$ $\frac{30}{23}$	176 /12/ 1:02 PM 30 176 LG x X
2) 37 13971 1.4 22112	128-01 30 10 1/12/23 1010 30	149 1/12/ 1:15 10 149 LG X X
3) 13384 1.4 22112	30 /12/23	1/12/ 23 Luxx
4)		
RELINQUISHED: //1/23 RECEIVED RELINQUISHED: DATE / TIME RECEIVED 5:30 m Fel	DATE / TIME QC Data Package LAR Level I DATE / TIME CONTROL OF THE LEVEL I DATE / TIME CONTROL OF THE LEVEL I DATE / TIME	310 20.4C
RELINQUISHED: DATE / TIME RECEIVED MSH	DE DATE / TIME Bristol	Vices 23A0671 no seal No or Due: 01/20/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23A0671

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 13, 2023 10:15

4330 Lewis Road, Suite 1

Date Issued: Janua

January 20, 2023 16:19

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.40°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	No
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Samples logged for VOC Fixed Gases by EPA 3C and ALT 145 CO per Tom Lock via email, which differs from the COC (Alt 145 CO, Hydrogen). MRS 01/13/23 1213

Sample -01was cacelled due to there not being sufficient sample volume. Client has been notified on 1/17/23 via email. DFE 1/17/23 1401

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

SCS Field Services - Harrisburg, PA Client Name:

January 20, 2023 9:25 Date Received:

4330 Lewis Road, Suite 1

January 27, 2023 14:02 Date Issued:

Harrisburg, PA 17111

Project Number: [none]

Submitted To: Tom Lock

150/0/415

Purchase Order:

07-SO04485

Client Site I.D.: **Bristol**

Enclosed are the results of analyses for samples received by the laboratory on 01/20/2023 09:25. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

Tom Lock

Date Received:

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Date Issued:

January 27, 2023 14:02

Harrisburg, PA 17111

Project Number: [none]

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW37	23A0954-01	Air	01/18/2023 12:32	01/20/2023 09:25

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 20, 2023 9:25

Date Issued: January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: EW37

Sample ID: 23A0954-01 Sample Matrix: Air

Sampled: 1/18/2023 12:32

Sample Type: LV

Sample Description/Location:
Sub Description/Location:
Canister ID: 063-00071::00331

Canister Size: 1.4L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg):

Receipt Vacuum(in Hg):

Flow Controller Type: PASSIVE

Date/Time

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis
ALT-145

ppmv ALI-145

MDL LOQ Flag/Qual Dilution PF

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis EPA 3C Vol% Date/Time Result MDL LOQ Flag/Qual Dilution ΡF Analyzed Analyst Analyte 10.8 0.45 0.45 9 Methane, as received 1 1/20/23 15:46 MER Carbon dioxide, as received 23.9 0.45 0.45 9 1 1/20/23 15:46 MER Oxygen (O2), as received 6.89 0.45 0.45 9 1 1/20/23 15:46 MER Hydrogen (H2), as received 2.50 0.18 0.18 9 1 1/20/23 15:46 MER Nitrogen (N2), as received 48.6 18.0 18.0 18 1/20/23 16:45 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Date Issued:

January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23A0954-01	1.00 mL / 1.00 mL	ALT-145	BGA0503	SGA0613	AG00026
23A0954-01	1.00 mL / 1.00 mL	EPA 3C	BGA0503	SGA0613	AG00026
23A0954-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGA0503	SGA0613	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Reporting

Date Issued: January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

%REC

[none]

RPD

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

	IN.	eporting		Spike	Source		/01 NLC		IXFD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGA0503 - No Prep VO	C GC Air										
Blank (BGA0503-BLK1)					Prep	pared & /	Analyzed	: 01/17/20)23		
Methane	<	500	ppmv								
Methane	<	0.05	Vol%								
Carbon dioxide	<	500	ppmv								
Carbon dioxide	<	0.05	Vol%								
Oxygen (O2)	<	500	ppmv								
Oxygen (O2)	<	0.05	Vol%								
Hydrogen (H2)	<	200	ppmv								
Nitrogen (N2)	<	2000	ppmv								
Nitrogen (N2)	<	1.00	Vol%								
Hydrogen (H2)	<	0.02	Vol%								
Carbon Monoxide	<	10.0	ppmv								
LCS (BGA0503-BS1)					Prep	pared & /	Analyzed	: 01/17/20)23		
Methane	4040	500	ppmv	5000		80.8	0-200				
Methane	4040	0.05	ppmv	5000		80.8	70-130				
Carbon dioxide	4360	500	ppmv	5000		87.1	0-200				
Carbon dioxide	4360	0.05	ppmv	5000		87.1	70-130				
Oxygen (O2)	5380	500	ppmv	5000		108	0-200				
Oxygen (O2)	5380	0.05	ppmv	5000		108	70-130				
Nitrogen (N2)	5690	2000	ppmv	5000		114	0-200				
Hydrogen (H2)	5900	200	ppmv	5100		116	0-200				
Hydrogen (H2)	5900	0.02	ppmv	5100		116	70-130				
Nitrogen (N2)	5690	1	ppmv	5000		114	70-130				
Carbon Monoxide	4880	10	ppmv	5000		97.6	0-200				
Carbon Monoxide	4880	0.001	ppmv	5000		97.6	70-130				
Duplicate (BGA0503-DUP1)		Soi	urce: 23A	0671-02	Prep	pared & /	Analyzed	: 01/17/20)23		
Methane	114000	4500	ppmv		11400	00		0.623	25		
Methane	11.4	0.45	Vol%		11.4	ļ		0.623	5		
Carbon dioxide	251000	4500	ppmv		24700	00		1.28	25		
Carbon dioxide	25.1	0.45	Vol%		24.7	,		1.28	5		
Oxygen (O2)	62700	4500	ppmv		6330	0		1.07	25		

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Reporting

Date Received:

January 20, 2023 9:25

Date Issued:

January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

RPD

Client Site I.D.: Bristol Purchase Order:

%REC

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

	•	coporting		Орико	000100		701 120		111 5	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0503 - No Prep VC	OC GC Air									
Duplicate (BGA0503-DUP1)		So	urce: 23A	0671-02	Prep	ared & A	Analyzed	: 01/17/2	023	
Oxygen (O2)	6.27	0.45	Vol%		6.33			1.07	5	
Hydrogen (H2)	25200	1800	ppmv		2460	0		2.30	25	
Nitrogen (N2)	478000	18000	ppmv		47500	00		0.487	25	
Nitrogen (N2)	47.8	9.00	Vol%		47.5			0.487	5	
Hydrogen (H2)	2.52	0.18	Vol%		2.46			2.30	5	
Carbon Monoxide	149	90.0	ppmv		150			1.20	25	
Carbon Monoxide	0.01	0.009	Vol%		0.02			1.20	5	
Duplicate (BGA0503-DUP2)		So	urce: 23A	0754-01	Prep	ared & A	Analyzed	: 01/20/2	023	
Methane	29.2	0.45	Vol%		28.9			1.05	5	
Methane	292000	4500	ppmv		28900	0		1.05	25	
Carbon dioxide	31.4	0.45	Vol%		31.1			0.925	5	
Carbon dioxide	314000	4500	ppmv		31100	0		0.925	25	
Oxygen (O2)	17900	4500	ppmv		1800	0		0.333	25	
Oxygen (O2)	1.79	0.45	Vol%		1.80			0.333	5	
Nitrogen (N2)	25.9	9.00	Vol%		25.7			0.763	5	
Nitrogen (N2)	259000	18000	ppmv		25700	0		0.763	25	
Hydrogen (H2)	47000	1800	ppmv		4690	0		0.363	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.0)		NA	25	
Duplicate (BGA0503-DUP3)		So	urce: 23A	0754-02	Prep	ared & A	Analyzed	: 01/20/2	023	
Methane	20.8	0.45	Vol%		20.7			0.651	5	
Methane	208000	4500	ppmv		20700	0		0.651	25	
Carbon dioxide	284000	4500	ppmv		28300	0		0.451	25	
Carbon dioxide	28.4	0.45	Vol%		28.3			0.451	5	
Oxygen (O2)	12000	4500	ppmv		11900)		0.427	25	
Oxygen (O2)	1.20	0.45	Vol%		1.19			0.427	5	
Hydrogen (H2)	57400	1800	ppmv		5800	0		1.04	25	
Nitrogen (N2)	375000	18000	ppmv		37400	00		0.283	25	
Nitrogen (N2)	37.5	9.00	Vol%		37.4			0.283	5	
Carbon Monoxide	<	90.0	ppmv		<90.0)		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Date Issued: Jan

January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Batch BGA0503 - No Prep VOC GC Air

Duplicate (BGA0503-DUP4)		So	urce: 23A0954-01	Prepared & Ar	nalyzed: 01/20/20	23
Methane	109000	4500	ppmv	108000	0.960	25
Methane	10.9	0.45	Vol%	10.8	0.960	5
Carbon dioxide	24.2	0.45	Vol%	23.9	1.32	5
Carbon dioxide	242000	4500	ppmv	239000	1.32	25
Oxygen (O2)	70200	4500	ppmv	68900	1.81	25
Oxygen (O2)	7.02	0.45	Vol%	6.89	1.81	5
Hydrogen (H2)	25600	1800	ppmv	25000	2.37	25
Nitrogen (N2)	497000	18000	ppmv	492000	1.05	25
Hydrogen (H2)	2.56	0.18	Vol%	2.50	2.37	5
Carbon Monoxide	145	90.0	ppmv	144	0.374	25
Carbon Monoxide	0.01	0.009	Vol%	0.01	0.374	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Jan

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Date Issued:

January 27, 2023 14:02

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 2/6/2023

														_					
COMPANY NAME	: SCS Fiel	d Servi	ces - Harr	isbu	irg IN	VOICE TO): Same				PROJ	ECT NAM	/IE/Quote #	#: Bristo	 ol				_
CONTACT: Sar	th End	Sly			IN'	VOICE CO	NTACT:					NAME:	150						-
ADDRESS:		(IN'	VOICE AD	DRESS:				PROJ	ECT NUN	/BER:						_
PHONE #:					IN'	VOICE PH	IONE #:				P.O. #	t:							_
FAX #:			EN	/AII							Pretre	atment Pi	rogram:						_
Is sample for com	pliance rep	orting?	YES) NO)	Regulat	ory State:	VA Is	sample fro	m a chlori	nated supp			- T	VS I.D. #:					_
SAMPLER NAME	(PRINT):	hio	in Seyn	mo	WI SA	MPLER S	IGNATUR	E: NOW	5	mor	Turn	Around T	ime: Circ	cle: 10 (5 Days)	or _		—)ay
Matrix Codes: AA=Indo	or/Ambient Air	SG=Soil	Gas LV=Lan	dfill/\	Vent Gas OT	=Other 👆 🗎	<i>'</i>	The state of the s	V			063	3-23A-000	5			14.70		_
	Regulator	Info	Canister Ir	forr	nation			Sampling	Start Inform	nation		Sampling	Stop Inform	nation		(SS)	ANA	ALY	SI
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g): 30.03		Barometri	Pres. (in H	g):		Codes)		. 9	2
SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (see	Alt 145 CO	hydroida	42 22
1) EW37	5005		331	1.4	221228-01	21.2	3.4"	01/18	12:3000	27	149	01/18	12:32 pm	9	149				
2)		1	335	1.4	221228-01	21.2			,							LG	x		
3)			10047	1.4	221228-01	21.2				s						LG	x	8	
4)		137	12453	1.4	221228-01	21.2		-		*		al a				LG	x		
RELINQUISHED:				REC	CEIVED:	-	DAT	E / TIME	QC Data P	ackage I A	20.5%	310	no ie	e, no	sail			3	
	1		1		1	eder E	F		Level I		D 03E	CIVLI							
RELINQUISHED:	dex E	DAT	E / TIME	REC	CSB	1/20/	DAT	925	Level II	- I			ervices	23A09	954				
RELINQUISHED:	S.	DAT	E / TIME	REC	CEIVED:			E / TIME	Level III		Bristo		023 Due	· 01/27/2	2023				
	1			1					Level IV		Recd:	01/20/20	J23 Due	v130	325002	-			_

063-23A-0005-Bristol Page 9 of 10

Certificate of Analysis

Final Report

Laboratory Order ID 23A0954

Client Name: SCS Field Services - Harrisburg, PA Date Received:

Date Issued: January 27, 2023 14:02

January 20, 2023 9:25

4330 Lewis Road, Suite 1

Harrisburg, PA 17111

Tom Lock

Submitted To:

Project Number: [none]

Client Site I.D.: Bristol Purchase Order: 07-SO04485

Sample Conditions Checklist

Samples Received at:	20.50°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA Date Received: January 27, 2023 11:02

4330 Lewis Road, Suite 1 Date Issued: February 2, 2023 16:04

Harrisburg, PA 17111 Project Number: [none]

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 01/27/2023 11:02. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received: J

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued:

February 2, 2023 16:04

Harrisburg, PA 17111

Project Number: [none]

Purchase Order:

07-SO04485

Submitted To:

Tom Lock

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
57	23A1337-02	Air	01/25/2023 12:08	01/27/2023 11:02
37	23A1337-03	Air	01/25/2023 11:55	01/27/2023 11:02

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 27, 2023 11:02

February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 57

Sample ID: 23A1337-02 Sample Matrix: Air

Sampled: 1/25/2023 12:08

Sample Type: LV

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00024::10047 Canister Size: 1.4L

ppmv

Initial Vacuum(in Hg): 21.1 Final Vacuum(in Hg):

Receipt Vacuum(in Hg): Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 300 9 Carbon Monoxide, as received 90.0 90.0 1 1/31/23 12:05 MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadju	sted, as received basis				
		Vol%		EPA 3C				Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilut	ition	PF	Analyzed	Analyst
Methane, as received	25.2	0.45	0.45		9		1	1/31/23 12:05	MER
Carbon dioxide, as received	53.8	0.45	0.45		9		1	1/31/23 12:05	MER
Oxygen (O2), as received	1.48	0.45	0.45		9		1	1/31/23 12:05	MER
Hydrogen (H2), as received	6.78	0.36	0.36		18	3	1	1/31/23 17:27	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	1	1/31/23 12:05	MER
Carbon Monoxide, as received	0.03	0.009	0.009		9	1	1	1/31/23 12:05	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received:

January 27, 2023 11:02

Date Issued:

February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.:

Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23A1337-03

Sample Matrix: Air Sampled: 1/25/2023 11:55

Sample Type: LV

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00310::12453 Canister Size: 1.4L

Initial Vacuum(in Hg): 21.1

Final Vacuum(in Hg):

Receipt Vacuum(in Hg):

Flow Controller Type: Passive

Flow Controller ID:

Vo	latile Organic Compounds by GC/TCD -	Unadjusted,	as received basis
	AIT 445		

ALT-145 ppmv

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 148 9 Carbon Monoxide, as received 90.0 90.0 1 1/31/23 13:12 MER

	Vola	atile Organi	c Compour	ds by GC/TCD - Unadjusted,	as received basis			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	11.7	0.45	0.45		9	1	1/31/23 13:12	MER
Carbon dioxide, as received	25.8	0.45	0.45		9	1	1/31/23 13:12	MER
Oxygen (O2), as received	6.18	0.45	0.45		9	1	1/31/23 13:12	MER
Hydrogen (H2), as received	2.39	0.18	0.18		9	1	1/31/23 13:12	MER
Nitrogen (N2), as received	45.6	18.0	18.0		18	1	1/31/23 17:43	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	1/31/23 13:12	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued: February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order: 0

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Comp	oounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23A1337-02	1.00 mL / 1.00 mL	ALT-145	BGA0766	SGA0947	AG00026
23A1337-03	1.00 mL / 1.00 mL	ALT-145	BGA0766	SGA0947	AG00026
23A1337-02	1.00 mL / 1.00 mL	EPA 3C	BGA0766	SGA0947	AG00026
23A1337-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGA0766	SGA0947	AG00026
23A1337-03	1.00 mL / 1.00 mL	EPA 3C	BGA0766	SGA0947	AG00026
23A1337-03RE1	1.00 mL / 1.00 mL	EPA 3C	BGA0766	SGA0947	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued:

February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0766 - No Prep VO	C GC Air									
Blank (BGA0766-BLK1)					Prep	pared &	Analyzed	: 01/25/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGA0766-BS1)					Prep	ared &	Analyzed	: 01/25/20)23	
Methane	4070	500	ppmv	5000		81.4	0-200			
Methane	4070	0.05	ppmv	5000		81.4	70-130			
Carbon dioxide	4300	500	ppmv	5000		86.0	0-200			
Carbon dioxide	4300	0.05	ppmv	5000		86.0	70-130			
Oxygen (O2)	5260	0.05	ppmv	5000		105	70-130			
Oxygen (O2)	5260	500	ppmv	5000		105	0-200			
Nitrogen (N2)	5810	2000	ppmv	5000		116	0-200			
Hydrogen (H2)	5960	200	ppmv	5100		117	0-200			
Nitrogen (N2)	5810	1	ppmv	5000		116	70-130			
Hydrogen (H2)	5960	0.02	ppmv	5100		117	70-130			
Carbon Monoxide	4950	10	ppmv	5000		99.0	0-200			
Carbon Monoxide	4950	0.001	ppmv	5000		99.0	70-130			
Duplicate (BGA0766-DUP1)		Soi	urce: 23A	1035-01	Prep	ared &	Analyzed	: 01/25/20)23	
Methane	229000	4500	ppmv		22800	00		0.633	25	
Methane	22.9	0.45	Vol%		22.8	3		0.632	5	
Carbon dioxide	286000	4500	ppmv		28500	00		0.485	25	
Carbon dioxide	28.6	0.45	Vol%		28.5	5		0.485	5	
Oxygen (O2)	15500	4500	ppmv		1570	0		1.39	25	
Oxygen (O2)	1.55	0.45	Vol%		1.57	,		1.39	5	
Nitrogen (N2)	336000	18000	ppmv		33600	00		0.0580	25	
Hydrogen (H2)	54500	1800	ppmv		5460	0		0.204	25	
Nitrogen (N2)	33.6	9.00	Vol%		33.6	i		0.0580	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued: February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

$\label{lem:compounds} \mbox{Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control}$

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0766 - No Prep VO	C GC Air									
Duplicate (BGA0766-DUP1)	Source: 23A1035-01			Prep	ared & A	Analyzed	: 01/25/20	023		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGA0766-DUP2)		Soi	urce: 23A	1035-02	Prep	ared & A	Analyzed	: 01/25/20	023	
Methane	28.8	0.45	Vol%		28.7	,		0.285	5	
Methane	288000	4500	ppmv		28700	00		0.285	25	
Carbon dioxide	31.4	0.45	Vol%		31.1			0.783	5	
Carbon dioxide	314000	4500	ppmv		31100	00		0.783	25	
Oxygen (O2)	15700	4500	ppmv		1550	0		0.946	25	
Oxygen (O2)	1.57	0.45	Vol%		1.55	i		0.946	5	
Hydrogen (H2)	62900	1800	ppmv		6220	0		1.17	25	
Nitrogen (N2)	25.7	9.00	Vol%		25.5	i		0.650	5	
Nitrogen (N2)	257000	18000	ppmv		25500	00		0.650	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BGA0766-DUP3)		Soi	urce: 23A	1035-03	Prepared & Analyzed: 01/25/2023					
Methane	31.0	0.45	Vol%		31.1			0.499	5	
Methane	310000	4500	ppmv		31100	00		0.499	25	
Carbon dioxide	352000	4500	ppmv		35300	00		0.417	25	
Carbon dioxide	35.2	0.45	Vol%		35.3	1		0.417	5	
Oxygen (O2)	1.36	0.45	Vol%		1.37			0.368	5	
Oxygen (O2)	13600	4500	ppmv		1370	0		0.368	25	
Nitrogen (N2)	21.1	9.00	Vol%		21.2			0.594	5	
Hydrogen (H2)	65600	1800	ppmv		6560	0		0.0264	25	
Nitrogen (N2)	211000	18000	ppmv		21200	00		0.594	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	19		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Harrisburg, PA Date Received: ite 1 Date Issued:

ed: January 27, 2023 11:02 February 2, 2023 16:04

[none]

RPD

4330 Lewis Road, Suite 1

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

Reporting

Client Site I.D.: Bristol Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

%REC

1	•	cporting		Opine	Courco		/UINEO			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0766 - No Prep VO	C GC Air									
Duplicate (BGA0766-DUP4)		Source: 23A1035-04			Prep	ared & A	023			
Methane	149000	4500	ppmv		14900	00		0.483	25	
Methane	14.9	0.45	Vol%		14.9)		0.483	5	
Carbon dioxide	253000	4500	ppmv		25200	00		0.507	25	
Carbon dioxide	25.3	0.45	Vol%		25.2	2		0.507	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	453000	18000	ppmv		45100	00		0.486	25	
Hydrogen (H2)	18800	1800	ppmv		1900	0		1.01	25	
Hydrogen (H2)	1.88	0.18	Vol%		1.90)		1.01	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGA0766-DUP5)	Source: 23A1337-0			1337-02	Prep	ared & A	Analyzed	: 01/31/2	023	
Methane	251000	4500	ppmv		25200	00		0.551	25	
Methane	25.1	0.45	Vol%		25.2	2		0.551	5	
Carbon dioxide	53.6	0.45	Vol%		53.8	3		0.363	5	
Carbon dioxide	536000	4500	ppmv		53800	00		0.363	25	
Oxygen (O2)	14600	4500	ppmv		1480	0		0.833	25	
Oxygen (O2)	1.46	0.45	Vol%		1.48	3		0.833	5	
Nitrogen (N2)	52200	18000	ppmv		5250	0		0.508	25	
Hydrogen (H2)	69300	1800	ppmv		6870	0		0.823	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	0.03	0.009	Vol%		0.03	3		0.239	5	
Carbon Monoxide	301	90.0	ppmv		300			0.239	25	
Duplicate (BGA0766-DUP6)		Soi	urce: 23A	1337-03	Prep	Prepared & Analyzed: 01/31/2023				
Methane	117000	4500	ppmv		11700	00		0.503	25	
Methane	11.7	0.45	Vol%		11.7	•		0.503	5	
Carbon dioxide	26.0	0.45	Vol%		25.8	3		0.732	5	
Carbon dioxide	260000	4500	ppmv		25800	00		0.732	25	
Oxygen (O2)	6.20	0.45	Vol%		6.18	3		0.409	5	
Oxygen (O2)	62000	4500	ppmv		6180	0		0.409	25	
Nitrogen (N2)	455000	18000	ppmv		45400	00		0.181	25	
Hydrogen (H2)	24600	1800	ppmv		2390	0		3.14	25	
Hydrogen (H2)	2.46	0.18	Vol%		2.39)		3.14	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

February 2, 2023 16:04 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: [none]

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0766 - No Prep VC	OC GC Air									
Duplicate (BGA0766-DUP6)	Source: 23A1337-03			Prep	pared & /	Analyzed	: 01/31/20	023		
Carbon Monoxide	145	90.0	ppmv		148	i		1.60	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			1.60	5	
Duplicate (BGA0766-DUP7)		Soi	urce: 23A	1447-01	Prep	pared & /	Analyzed	: 01/31/20	023	
Methane	225000	4500	ppmv		22200	00		1.52	25	
Methane	22.5	0.45	Vol%		22.2	2		1.52	5	
Carbon dioxide	307000	4500	ppmv		30200	00		1.49	25	
Carbon dioxide	30.7	0.45	Vol%		30.2	2		1.49	5	
Oxygen (O2)	4900	4500	ppmv		4820)		1.60	25	
Oxygen (O2)	0.49	0.45	Vol%		0.48	3		1.60	5	
Hydrogen (H2)	20200	1800	ppmv		2050	0		1.18	25	
Nitrogen (N2)	405000	18000	ppmv		40000	400000 1.22			25	
Nitrogen (N2)	40.5	9.00	Vol%		40.0)		1.22	5	
Hydrogen (H2)	2.02	0.18	Vol%		2.05	5		1.18	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Duplicate (BGA0766-DUP8)		So	urce: 23A	1447-02	Prepared & Analyzed: 01/31/2023					
Methane	385000	4500	ppmv		38600	00		0.358	25	
Methane	38.5	0.45	Vol%		38.6	3		0.358	5	
Carbon dioxide	387000	4500	ppmv		38700	00		0.128	25	
Carbon dioxide	38.7	0.45	Vol%		38.7	,		0.128	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	63200	1800	ppmv		6330	0		0.261	25	
Nitrogen (N2)	111000	18000	ppmv		11100	00		0.102	25	
Nitrogen (N2)	11.1	9.00	Vol%		11.1			0.102	5	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Reporting

Date Issued: February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

RPD

Client Site I.D.: Bristol

Purchase Order:

%REC

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGA0766 - No Prep VO	C GC Air										
Duplicate (BGA0766-DUP9)		Sou	urce: 23A	1447-03	Prep	pared & A	Analyzed	I: 01/31/20	023		
Methane	283000	4500	ppmv		2870	00		1.55	25		
Methane	28.3	0.45	Vol%		28.7	7		1.55	5		
Carbon dioxide	317000	4500	ppmv		3200	00		0.863	25		
Carbon dioxide	31.7	0.45	Vol%		32.0)		0.863	5		
Oxygen (O2)	19200	4500	ppmv		1940	0		1.33	25		
Oxygen (O2)	1.92	0.45	Vol%		1.94	l		1.33	5		
Hydrogen (H2)	65500	1800	ppmv		6570	0		0.373	25		
Nitrogen (N2)	263000	18000	ppmv		2660	00		1.25	25		
Nitrogen (N2)	26.3	9.00	Vol%		26.6	6		1.25	5		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		
Duplicate (BGA0766-DUPA)		Sou	urce: 23A	1447-04	Prep	pared & A	Analyzed	I: 01/31/20	023		
Methane	363000	4500	ppmv		3630	00		0.0254	25		
Methane	36.3	0.45	Vol%		36.3	3		0.0254	5		
Carbon dioxide	381000	4500	ppmv		3800	00		0.123	25		
Carbon dioxide	38.1	0.45	Vol%		38.0)		0.123	5		
Oxygen (O2)	19500	4500	ppmv		1950	0		0.170	25		
Oxygen (O2)	1.95	0.45	Vol%		1.95	5		0.170	5		
Nitrogen (N2)	147000	18000	ppmv		1460	00		0.148	25		
Nitrogen (N2)	14.7	9.00	Vol%		14.6	6		0.148	5		
Hydrogen (H2)	47800	1800	ppmv		4730	0		1.09	25		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued: February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 2/6/2023

COMPANY NAME	: SCS Field	Servi	ces - Harri	sbu	rg INV	OICE TO	Same				WILL SEPERSE		IE/Quote #	Bristo	ol				
CONTACT: Sara	th Ends	sly		Y	INV	OICE CO	NTACT:		- 17		SITE NAME: Bristol								
ADDRESS:				ľ	INV	OICE AD	DRESS:				PROJECT NUMBER: 07220028.00								
PHONE #:			775		INV	OICE PH	ONE #:				P.O. #:								
FAX #:			EN	AIL		Auto I		146		177	Pretre	atment Pr	ogram:			-05			
Is sample for com	pliance rep	orting?	YES NO		Regulato	ory State:	VA Is	sample fro	m a chlorir	nated sup	oly?	YES (DV PV	VS I.D. #:					
SAMPLER NAME	(PRINT):	Rija	in Seyr	na	JI SA	MPLER S	IGNATUR	E: Nyan	, Say	mer	Turn	Around T	ime: Circ	de: 10 (5 Days)	or _	_ D	ay
Matrix Codes: AA=Indo	or/Ambient Air	SG=Soil	Gas LV=Land	fill/V	ent Gas OT	=Other\		1	V			063	3-23A-000	5			13/15		
	Regulator	Info	Canister In	form	nation			Sampling S	Start Inform			Sampling	Stop Inform	nation		(sep	ANALYSI:		
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	30.0	,	Barometric	Pres. (in H	g):		oo ee	00	ं अ	1
SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (ir Hg)	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (s	145	hydrog 2	2 4
1) EW37	51005		-331	-1.4	22122 8-01	21.2		01/18	12:30 pm	27	149	01/18	12:32 pm	9	149	LG	X	(X	
2) Empt	STUOS	1	335	1.4	221228-01	21.2	EN	K	*-	RE	L	RN	All of the second			LG	x	XX	(
3) 57	57005		10047	1.4	221228-01	21.2	100	1/25/	12:05 pm	27	148	1/25/	12:089	10	148	LG	×	XX	
4) 37	V	47	12453	1.4	221228-01	21.2	10	1/25/23	11:50A	26	170	1/25/23	11:55 AM	10	סרו	LG	x		
a magazina				21	1						19	300,31	D, no is	e, no 5	304)	1		26]
RELINQUISHED:	Lame	111	1/25/23	REC	CEIVED:	-ODex G		TE / TIME		Package L	AB USI	ONLY							
	Fedex G	5	TE / TIME		CEIVED:		27/23	TE / TIME	Level II		SCS Bristo	Field So	ervices	23A1	337				
RELINQUISHED:	3	DA	TE / TIME	REC	CEIVED:		DA	IE / IIME	Level IV		Recd:	01/27/20	023 Due	e: 02/03/2	2023	4			il i

Page 12 of 13

Certificate of Analysis

Final Report

Laboratory Order ID 23A1337

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 27, 2023 11:02

4330 Lewis Road, Suite 1

Date Issued:

February 2, 2023 16:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	19.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments